这类东西虽然拥有很大的直接价值以及附带价值。
但林灰想进行搬运也很困难。
纯粹技术角度来说,就有很多麻烦。
林灰清楚很多常用数据挖掘手段。
但似乎现在复刻下来都很困难。
就拿前世挖掘数据比较常用的基于ai和云计算的大数据挖掘方法。
从名字上看这种很烂大街的数据挖掘方式就用到了前世最热门的计算机互联网领域的三个概念。
——人工智能、大数据、云计算。
也确实如此,这种基于ai和云计算的大数据挖掘数据的方式跟以上三者息息相关。
按照这种方法进行数据挖掘。
首先要应用到与多个在线服务终端有通信连接的云端服务中心。
在利用这种方法进行数据挖掘的时候还要获取针对在线云计算项目的大数据决策信息当前所能执行的大数据服务控件所对应的大数据挖掘业务的挖掘评价指标信息。
在具体进行数据挖掘的时候,还要提前配置人工智能模型。
至于为什么要配置人工智能模型?
因为只有配置了人工智能模型,根据预先配置的人工智能模型才能实现对所述挖掘评价指标信息进行指标分类。
如此才能更容易的获得指标分类结果。
搞到指标分类结果还不算完。
在此基础上还要进一步将指标分类结果搞成多个指标分类集。
再从指标分类所分成的多个指标分类集分别提取对应的指标分类挖掘特征。如此才能实现高效而精准的挖掘。
未来如果想要实现高效的大数据作业效率。
在数据挖掘的过程中指标分类挖掘特征除了用于来提供一定的量化数据之外。
还要用于表示所述指标分类集所对应的聚类主题簇所对应的聚类主题特征。
而这又需要根据提取的指标分类挖掘特征确定各个指标分类集之间的挖掘服务模式。
这还不算,在此基础之上根据确定出各个指标分类集之间的挖掘服务模式。
再之后还要构建对应的挖掘服务拓扑图谱。
根据构建的所述挖掘服务拓扑图谱。
如此才能分别确定各个指标分类集所对应的大数据挖掘流程。
确定各个指标分类集所对应的大数据挖掘流程之后。
根据各个指标分类集所对应的大数据挖掘流程以及所述多个指标分类集之间的具有主题类别标识的主题实体关系。
这样方可以执行所述指标分类结果中各个指标分类集对应的大数据挖掘进程。
林灰上面的步骤已经是相当之概略了。
实际上根据确定出各个指标分类集之间的挖掘服务模式构建对应的挖掘服务拓扑图谱的步骤时远不止于几句话所描述的得这么简单。
实际上在涉及:
如何确定出各个指标分类集之间的挖掘服务模式?
如何将同一类挖掘服务模式所覆盖的各个目标指标分类集划分为一个挖掘服务分布图谱?
如何根据每一个挖掘服务分布图谱内的分布热力图将分布热力图匹配预设热力特征的挖掘服务分布图谱的分布范围缩小并将分布热力图小于预设数量阈值的挖掘服务分布图谱的分布范围扩大得到调整后的各挖掘服务分布图谱?